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Abstract. Fractals constructed by recursion processes are introduced to model growth 
phenomena. These fractals are simultaneously directed and self-similar in analogy with 
patterns growing under diffusion-limited conditions. The multifractal nature of the har- 
monic measure associated with Laplacian interfaces is qualitatively interpreted using the 
models. Calculation of the largest singularity exponent allows us to make conclusions 
about the behaviour of diff usion-limited aggregates. 

The growth of objects with fractal geometry [ 1-41 is a common phenomenon in nature. 
In many cases the reason for the fractal properties of the interface is the instability of 
the process due to the presence of a non-local field satisfying the Laplace equation. 
This kind of growth typically leads to branching fractal structures with deep fjords 
between the branches. The most studied examples include electrodeposition [ 5,6], 
crystallisation [7,8], dielectric breakdown [9] and viscous fingering [ 10, 111. Although 
a considerable amount of information has accumulated about these processes [4, 12- 
151, the basic phenomenon still lacks theoretical description based on first principles. 
One way of understanding fractal growth is by building deterministic models and in 
the present letter we undertake this approach. 

When designing a model for fractal growth one has to take into account some of 
the already known features of the corresponding real structures. Studies of the 
diffusion-limited aggregation (DLA) model of Witten and Sander [16] and the related 
experimental systems [5-113 have greatly contributed to our knowledge of these 
properties. The structure of DLA clusters has been shown to exhibit two kinds of 
anisotropies. The overall shape of clusters generated on a square lattice is initially 
approximately circular, but for very large sizes it crosses over into a cross-like pattern 
[ 17, 181. Investigations of the angle-dependent correlations revealed another type of 
anisotropy: the exponent describing the decay of the density correlations within the 
DLA clusters is smaller in the radial direction than in the tangential one [18]. As far 
as concerning the multifractal nature [ 19-23] of the growth probability distribution of 
Laplacian patterns numerical [24-261 and experimental [27,28] evidence supports that 
the growth velocity of the interface can be described in terms of a fractal measure. 

Deterministic or other models based on constructing a fractal recursively represent 
a useful tool in studying fractal growth because they allow for exact treatment of a 
number of properties [29,30]. For example, the scaling of the cluster size distribution 
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in diffusion-limited deposits observed in the simulations holds exactly in a deterministic 
model for DLA [29]. Recently branching Julia sets were proposed as deterministic 
structures with a harmonic measure on them analogous to the growth probability 
distribution of Laplacian patterns [31]. Numerical integration of the Laplace equation 
represents a further method of description of fractal growth by deterministic approaches 
[32,33]. 

An important common feature of growth phenomena is that the motion of the 
interface starts from a small bounded region (or in some other cases from a hyperplane) 
and, correspondingly, the growth takes place in a direction pointing away from the 
seed configuration (or from the initial surface). This behaviour is obvious from simply 
looking at the computer-generated or experimental structures [4]. The branches tend 
to grow outward, and practically there are no branches developing in a direction of 
the seed. Thus, there exists a directedness inherent in Laplacian patterns due to this 
simple geometrical constraint. The above-mentioned angular dependence of the density 
correlations is one of the ways this property is manifested. 

The directedness of the patterns raises the question of self-similarity of such 
structures. In other words: can directed clusters be self-similar? When the standard 
recursive methods of generating a deterministic fractal are applied [ 11 this problem 
does not arise. In the case of using a generator which leads to branching structures 
we can observe that the branches are turned with a given angle at each step of the 
iteration procedure resulting in branches directed in all possible directions, moreover, 
in the appearence of unphysical spirals. 

The above undesirable effect is avoided in the model introduced in this letter. In 
the construction to be described below the units of the previous stage are replaced 
with an appropriately rotated and reflected (mirror image) version of the generating 
configuration. The model is demonstrated in figure 1 .  The first stage ( k  = 1) is the 
generator: a simple branching structure made of three units (intervals of the same 
length). At the next stages each of the units obtained at the previous steps are replaced 
by the k = 1 configuration while simultaneously obeying the following rules: (a )  none 
of the branches should point in a direction below the horizontal; ( b )  no branches are 
allowed to overlap or touch each other. These rules can be satisfied uniquely by 
replacing a unit with either the generating configuration or with its mirror image. 
Figures l (b)  and l ( c )  show the third and the seventh stages of the construction, 
respectively. The mathematical fractal is obtained in the k -* 00 limit. For comparison 
a large branch of a DLA cluster is also displayed (figure l (d ) ) .  

The fractal dimension of the above construction is 

D = In 3/ln 2 = 1.585. ( 1 )  
This value is smaller than D = 1.7 generally associated with diffusion-limited patterns. 
However, our goal is not to construct a model with D -  1.7 (this can also be done), 
but to create a deterministic structure which possesses the main qualitative features 
of DLA clusters. In the present approach the angle 0 between the vertical branch and 
the branch growing out to the right in the genrating configuration is an adjustable 
parameter. Varying the angle 0 generates analogous, but different looking configur- 
ations (figure 2) having the same fractal dimension D = In 3/ln 2. 

The model illustrated in figure 1 can be generalised to include randomness. If the 
branching angle 0 is smaller than or equal to ~ 1 4 ,  two consecutive left or right turns 
(off the vertical direction) can be made without violating the condition of growing 
upward. This version of the model is degenerate in the sense that usually there is more 
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Figure 1. The first, third and seventh steps in the 
construction of a deterministic model for Laplacian 
patterns (a, b and c, respectively). For comparison 
a branch of a large diffusion-limited aggregate is 
shown in ( d )  (courtesy of P Meakin). 

than one choice for the direction of the branches satisfying the rules ( a )  and ( b ) .  An 
example with 0 = ~ / 4  generated by choosing randomly from the allowed directions 
when replacing a unit is shown in figure 3. These patterns seem to resemble the DLA 
branch displayed in figure l ( d )  even more than the deterministic construction. 

It is important to note that the fractals introduced in this letter have the following 
special property. Since they are constructed using a recursion procedure they are 
bound to be self-similar. On the other hand, they are directed: there is a well defined 
direction which can be attributed to the structure. Our model, however, is rather 
different from the commonly known examples for directed clusters, which are typically 
self-affine. For instance, the directed percolation clusters and the lattice animals are 
characterised by two scaling exponents, i.e., depending on the direction in which the 
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Figure 2. The same type of fractal as shown in figure 1 for two different branching angles. 
Both structures have the same fractal dimension D = In 3/ln 2 = 1.585. 

Figure 3. Random recursive model for branching angle less than r/4.  

extension of the cluster is measured, their linear size grows according to different 
powers of the number of particles in them (see e.g. [34]). This is the property which 
indicates the self-affinity of such clusters, in contrast to the models introduced here. 

Let us next analyse the model displayed in figure 1 from the point of view of its 
multifractal behaviour. Imagine that the structure is made of a perfect conductor and 
is electrically charged. Then the electric field (or the density of charge carriers) at the 
surface is called the harmonic measure corresponding to the given configuration. It 
is the gradient of a scalar field satisfying the Laplace equation with appropriate 
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boundary conditions, and as such is in complete analogy with the growth probability 
or interface velocity distribution of Laplacian patterns. 

A close inspection of, e.g., figure 2( b) shows that the structure is made of two kinds 
of almost closed loops being open to a different degree. (In the following we shall 
simply use the word loop for these imperfectly closed parts of the structure and the 
word opening for the entrance of these loops.) This observation makes it easier to 
understand what is the mechanism which produces the multifractal nature of the 
harmonic measure of DLA clusters. Each time we get deeper into the pattern and enter 
a loop, the field is decreased (screened) by a given factor A I  or A 2  (depending which 
type of loop we enter). As a result, the strength of the field is determined by a 
multiplicative process with different weights A ,  and A 2  which is well known to lead to 
fractal measures [ 19,231. 

The above qualitative picture can be made more quantitative by noticing that the 
openings of the consecutive loops of the same type produce two characteristic cones 
with the corresponding angles 4p1 and cpZ as demonstrated in figure 4 ( a ) .  Next we 
assume that the ragged interface between the fractal and the cone-shaped empty regions 
can be approximated by a smooth surface such as in the probability scaling theory of 
DLA [35,36]. However, in the present case instead of the convex shape with a tip we 
treat an incision having the shape of a cone. Nevertheless, we shall use the term tip 
for the place where the smoothed-out interface has a sharp turn. 

(01 (61 

Figure 4. The angles depicted in this figure are used in the text to calculate the largest 
singularity exponent amax of the harmonic measure associated with the fractal in figure 1. 

The potential along the above-described cones is constant and we expect that its 
gradient (the electric field playing the role of the measure defined on the fractal) goes 
to zero as some power of the distance from the tip. The situation is analous to the 
picture used in the probability scaling approach [35,36]; however, in our case cpl and 
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cpz are smaller than r / 2 .  Thus, we can make use of the known solution of the simplified 
problem shown in figure 4(b): 

where 4 denotes the electric potential, C is a constant and r is the distance from the 
tip. Let us now assume that the structure is covered by boxes of linear size E.  Then 
the amount of measure in a box consisting of a tip of angle Q is given by 

m ( E ) -  E ~ ’ ~ ,  (3) 
This expression is equivalent to a singularity exponent 

In m ( E )  
In E 

a=-- - r/cp. (4) 

As we saw, there are two characteristic angles and the smaller one gives the largest a. 
In the limit Q + O  we have a,,,+o~. One can find amax(min), the smallest value (as 
a function of 8 )  of amax from the condition ‘pl = cp2. This relation holds for a well 
defined 8 which can be determined from the equations (figure 4(a))  

using pl= r / 2 - 8 ,  Q ~ =  8 - ( y - p )  and the condition Q,  = ( p 2  resulting in e =  
r / 4 + ( y + p ) / 2 .  The above equation can easily be solved numerically, and gives 
a = 1.005 and p =0.305. Consequently, the smallest amax corresponds to Q = 0.131 
giving a,,,(min)-24. This value is of the same order as ~ , , , ( D L A ) = ~ ,  but is about 
2.8 times larger. 

9 corresponds to Q = 0.35. This 
value is quite close to Q’=  0.3, where the tangential correlation function (describing 
the correlations in a layer at a given distance from the origin) of large off-lattice DLA 
clusters has its minimum. This minimum can be associated with the average angle of 
the empty region between the large branches of diffusion-limited aggregates, or with 
the cone angle in our approach. The coincidence supports the picture which was used 
in this letter, namely that a,,, is determined by the characteristic angle of the deep 
cone-shaped fjords inside the aggregates. In addition, the relatively low value amax = 9 
indicates that diffusion-limited growth tends to take place in a way which minimises 

It is an interesting fact that according to (4) a,,, 

a m a x .  
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